Sharp Hardy-littlewood-sobolev Inequality on the Upper Half Space

نویسندگان

  • JINGBO DOU
  • MEIJUN ZHU
چکیده

There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequality on the upper half space (which is conformally equivalent to a ball). The existences of extremal functions are obtained; And for certain range of the exponent, we classify all extremal functions via the method of moving sphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New, Rearrangement-free Proof of the Sharp Hardy-littlewood-sobolev Inequality

We show that the sharp constant in the Hardy-Littlewood-Sobolev inequality can be derived using the method that we employed earlier for a similar inequality on the Heisenberg group. The merit of this proof is that it does not rely on rearrangement inequalities; it is the first one to do so for the whole parameter range.

متن کامل

Hardy-Littlewood-Sobolev inequalities via fast diffusion flows.

We give a simple proof of the λ = d - 2 cases of the sharp Hardy-Littlewood-Sobolev inequality for d≥3, and the sharp Logarithmic Hardy-Littlewood-Sobolev inequality for d = 2 via a monotone flow governed by the fast diffusion equation.

متن کامل

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion

In the euclidean space, Sobolev and Hardy-Littlewood-Sobolev inequalities can be related by duality. In this paper, we investigate how to relate these inequalities using the flow of a fast diffusion equation in dimension d ≥ 3. The main consequence is an improvement of Sobolev’s inequality when d ≥ 5, which involves the various terms of the dual Hardy-Littlewood-Sobolev inequality. In dimension...

متن کامل

On the Integral Systems Related to Hardy-littlewood-sobolev Inequality

We prove all the maximizers of the sharp Hardy-Littlewood-Sobolev inequality are smooth. More generally, we show all the nonnegative critical functions are smooth, radial with respect to some points and strictly decreasing in the radial direction. In particular, we resolve all the cases left open by previous works of Chen, Li and Ou on the corresponding integral systems.

متن کامل

Hardy-sobolev-maz’ya Inequalities for Arbitrary Domains

1.1. Hardy-Sobolev-Maz’ya inequalities. Hardy inequalities and Sobolev inequalities bound the size of a function, measured by a (possibly weighted) L norm, in terms of its smoothness, measured by an integral of its gradient. Maz’ya [22] proved that for functions on the half-space R+ = {x ∈ R : xN > 0}, N ≥ 3, which vanish on the boundary, the sharp version of the Hardy inequality can be combine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013